Hyper-volume Evolutionary Algorithm

نویسندگان

  • Khoi Nguyen Le
  • Dario Landa-Silva
چکیده

We propose a multi-objective evolutionary algorithm (MOEA), named the Hyper-volume Evolutionary Algorithm (HVEA). The algorithm is characterised by three components. First, individual fitness evaluation depends on the current Pareto front, specifically on the ratio of its dominated hyper-volume to the current Pareto front hyper-volume, hence giving an indication of how close the individual is to the current Pareto front. Second, a ranking strategy classifies individuals based on their fitness instead of Pareto dominance, individuals within the same rank are non guaranteed to be mutually non-dominated. Third, a crowding assignment mechanism that adapts according to the individual’s neighbouring area, controlled by the neighbouring area radius parameter, and the archive of non-dominated solutions. We perform extensive experiments on the multiple 0/1 knapsack problem using different greedy repair methods to compare the performance of HVEA to other MOEAs including NSGA2, SEAMO2, SPEA2, IBEA and MOEA/D. This paper shows that by tuning the neighbouring area radius parameter, the performance of the proposed HVEA can be pushed towards better convergence, diversity or coverage and this could be beneficial to different types of problems. Received 05 December 2015, revised 20 December 2015, accepted 31 December 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm

This paper proposes an evolutionary-based iterative local search hyper-heuristic approach called Iterated Search Driven by Evolutionary Algorithm Hyper-Heuristic (ISEA). Two versions of this algorithm, ISEAchesc and ISEA-adaptive, that differ in the re-initialization scheme are presented. The performance of the two algorithms was experimentally evaluated on six hard optimization problems using ...

متن کامل

Co-evolving add and delete heuristics

Hyper-heuristics are (meta-)heuristics that operate at a high level to choose or generate a set of low-level (meta-)heuristics to solve difficult search and optimisation problems. Evolutionary algorithms are well-known natureinspired meta-heuristics that simulate Darwinian evolution. In this article, we introduce an evolutionary-based hyper-heuristic in which a set of low-level heuristics compe...

متن کامل

Evolving Hyper-Heuristics for a Highly Constrained Examination Timetabling Problem

A lot of research has been conducted on hyper-heuristics for examination timetabling. However, most of this work has been focused on an uncapacitated version of the problem. This study reports on evolving hyper-heuristics for a highly constrained version of the problem, namely, the set of problems from the second International Timetabling Competition (ITC ’07). Previous work has shown that usin...

متن کامل

A study of evolutionary algorithm selection hyper-heuristics for the one-dimensional bin-packing problem

Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of comb...

متن کامل

Automatic Design of Decision-Tree Algorithms with Evolutionary Algorithms

This study reports the empirical analysis of a hyper-heuristic evolutionary algorithm that is capable of automatically designing top-down decision-tree induction algorithms. Top-down decision-tree algorithms are of great importance, considering their ability to provide an intuitive and accurate knowledge representation for classification problems. The automatic design of these algorithms seems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016